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Abstract
It is shown that the Lindblad equation accounts for memory effects. That is
to say, Lindblad operators can be constructed in a natural manner such that a
memory term appears in the asymptotic (time → ∞) region; at the same time
the expectation values depend on the initial state. Furthermore, a procedure
for extending the Lindblad equation to an equation of motion for an ideal Bose
‘gas’ of ‘particles’, i.e. systems with non-trivial internal structure, is described.
Initially in some quantum state this collection of ‘particles’ will asymptotically
turn into an equilibrium ensemble whose probability distribution is determined
by the Lindblad operators building the dissipative part of the equation of motion.

PACS numbers: 03.65.Yz, 03.65.−w, 05.30.Jp

(A) The Lindblad generalization [1] of Schrödinger motion to dissipative motion hinges, apart
from technical assumptions, only on very general physical notions:

(i) The Abelian group of unitary Schrödinger motion generated by the Hamiltonian
generalizes to a set of Abelian semigroups characterized by a collection of operators VJ ,
the Lindblad operators. The semigroup structure—the non-existence of time-reversed
motion—accounts for absorption.

(ii) Complete positivity, interpreted physically, means that positive motions in Hilbert space
of states (system 1) can be extended to a positive motion in the product space resulting
by adjoining a second Hilbert space (system 2), a construction leading to entanglement
of both systems.

It should be noted that in the derivation of the Lindblad equation, concepts used in the
derivation of master equations—for instance the decomposition of the space of states into a
product ‘system’ ⊗ ‘bath’—do not play any role, at any place. Nor is there any conceptual
relation with open systems. The relation of master equations with open systems and Lindblad
equations has been clarified to some extent [2–7] and shown to be controlled by relative scales.
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We take up this observation and consider a system whose degrees of freedom interact
with scale-dependent Hamiltonians and look for stationary states evolving from given initial
states, i.e. we construct maps (ρ is the density operator of our system)

τ (V ) : �|t=0 �→ �|t=∞ (1)

and discuss their dependence on the Lindblad operators VJ which together with the
Hamiltonian are supposed to differ for different scales—time scales, energy scales etc.

We present an explicit construction of asymptotic stationary states which will be seen to
contain memory terms.

(B) In this section, we consider the case of only one Lindblad operator V and write the
Lindblad equation of motion

Ḃ = i[H,B] + V +BV − 1
2 [V +V,B]+ (2)

where H is the Hamiltonian and B is an observable2.
Using the polar decomposition (U is a unitary operator)

V = U
√

V +V (3)

we rewrite (2) as (note that the assumption of unitarity of U excludes zero modes in V +V )

1√
V +V

Ḃ
1√

V +V
= i

1√
V +V

[H,B]
1√

V +V
+ U+BU

− 1

2

(
1√

V +V
B

√
V +V +

√
V +V B

1√
V +V

)
. (4)

The observation (see below) that

W := 1

V +V
(5)

is a (non-normalized) probability distribution leads us to the physically plausible assumption

W = W(H, . . .) (6)

where the dots indicate further observables commuting with H. Tracing the equation of motion
we immediately see that the trace of the rhs of the equation of motion vanishes identically and
hence

tr(ḂW) = 0 (7)

or

tr(BW) = const (8)

(Ẇ = 0 since W depends only on conserved quantities). Needless to say we tacitly assume
W to be traceclass.

In [8] we have demonstrated the following asymptotic form for B:

(i) Irreducible V

B|t=∞ = b(∞)I (9)

where I is the unit operator in H.

2 V is assumed to be invertible; B, H are bounded operators acting in a separable Hilbert space for which the Lindblad
equation has been proved. This fact allows us to use interchangeably the notions ‘operator’ and ‘matrix’ and treat the
question of dimensions—finite or infinite—in a rather cavalier way.



Letter to the Editor L47

(ii) Reducible V , i.e.

V =
∑

α

⊕Vα (10)

where the Vα are matrices in orthogonal subspaces Hα of H, yield

B|t=∞ =
∑

α

⊕ bα(∞)Iα. (11)

In the following, we consider only the irreducible case and derive

B|t=∞ = tr(B|t=0W)

tr(W)
I. (12)

The expectation value of the asymptotic configuration then is

〈B|t=∞〉 = tr(B|t=0�0) = tr(B|t=0W)

tr(W)
(13)

for all states �0, i.e. the expectation value is independent of the initial state, no memory effects
are present. We see that

PW = W

tr(W)
(14)

is a normalized probability distribution derived from the Lindblad operator V . Translating this
result into the Schrödinger picture we derive that any initial state �0 tends to PW for t → ∞,
i.e.

τ (V ) : �0 �→ �0|t=∞ = PW (15)

for all initial states �0.
We now turn to the question of memory effects. To show that they can be incorporated

we extend the Lindblad equation, without changing its formal content, to an equation of
motion for quantum subsystems separated, e.g. by scales, from the system built up by these
subsystems. As an example we could take a molecule: the subsystems are spanned by the
states corresponding to the inner degrees of freedom of the atoms composing the molecule,
the system—the molecule—is built up by the atomic states of outer shells.

To realize this construction we endow the input matrices V and H with a direct product
structure and, to simplify matters, choose the ansätze

V = (Ṽ ikI)
√

n (16)

H = (H̃ i,kH) (17)

Ṽ ik, H̃ ik ∈ C (18)

where I is the n × n unit matrix and H is an n × n matrix sub-Hamiltonian, identical for
all sites (i, k), i.e. Ṽ and H̃ are matrices with n × n matrix valued entries indexed by (i, k).
Our ansatz for V guarantees that, in the terms of our example, the Lindblad operator leaves
the inner degrees of freedom unaffected. The observable B is written as a matrix of n × n

matrices Bik

B = (Bik). (19)

The probability distribution is then

W = ((Ṽ +Ṽ )−1 ⊗ I) =: (W̃ ik ⊗ I). (20)
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V has the polar decomposition

V = U
√

V +V = (Ũ ⊗ I)
√

Ṽ +Ṽ ⊗ I. (21)

Tracing the equation of motion with respect to the indices (i, k) then yields instead of (7)

T̃r(ḂW) = H T̃r(W̃ H̃B) − T̃r(W̃BH̃ )H (22)

which leads to

T̃r(BW) = C +
∫ t

0
(H T̃r(W̃H̃B(t)) − T̃r(W̃B(t)H̃ )H) dt . (23)

It has to be stated that taking the trace of this n × n matrix, we obtain a vanishing result

Tr(ḂW) = trn T̃r(ḂW) = 0 (24)

in accordance with equation (7). This is because we have assumed

0 = [W,H ] = [W̃ , H̃ ] ⊗ H (25)

and, thus

[W̃ , H̃ ] = 0. (26)

Following the derivation given in [8] we find for the asymptotic configuration

B|t=∞ = b(∞)(δik) (27)

where b(∞) is now an n × n matrix which reads

b(∞) = 1

(T̃r W̃ )

(
T̃r(B|t=0W) +

∫ ∞

0
(H T̃r(W̃ H̃B(t)) − T̃r(W̃B(t)H̃ )H) dt

)
. (28)

We note the explicit appearance of a memory term. Calculating the expectation value of B|t=∞
in some state �0 written as

�(0) = (
�

(0)
ik

)
(29)

where the �
(0)
ik are n × n matrices, we find

〈B|t=∞〉 =
∑

i

trn
(
�

(0)

ii b(∞)
)

(30)

and observe that now the asymptotic expectation value does depend on the initial state in
concordance with the appearance of a memory term.

So we have seen that a simple and intuitively clear generalization of the Lindblad equation
to an equation for dynamical degrees of freedom of subsystems leads to memory effects; the
asymptotic subsystem variables given in equations (23) should be interpreted as the new
dynamical subsystem variables obtained from an asymptotic averaging procedure over those
degrees of freedom of the total system living on ‘lower’ scales; equations (23) are clearly seen
as an elimination procedure for ‘environment’ variables separated into a statistical average
and a memory term.

(C) We now turn to the case of more than one, say N, Lindblad operators. We take N finite
with the provision of eventually letting N → ∞ as certain physical models might require.
The equation of motion then reads

Ḃ = i[H,B] +
∑

J

(
V +

J BVJ − 1
2

[
V +

J VJ , B
]

+

)
. (31)

We rewrite this equation as an equation operating in a direct sum of identical spaces

HN =
∑
1→N

⊕H (32)
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and define

BN := BIN (33)

HN := H IN (34)

VN :=
√

N(VJ δJK) (35)

to arrive at

ḂN = i[HN,BN ] + V +
NBNVN − 1

2

[
V +

NVN,BN

]
+. (36)

The polar decompositions

VJ = UJ

√
V +

J VJ (37)

lead to the polar decomposition

VN = UN

√
V +

NVN (38)

where

UN = (UJ δJK) (39)

is unitary. Employing the same procedure as above we have

1√
V +

NVN

ḂN

1√
V +

NVN

= i
1√

V +
NVN

[HN,BN ]
1√

V +
NVN

+ U+
NBUN

− 1

2

(√
V +

NVNBN

1√
V +

NVN

+
1√

V +
NVN

BN

√
V +

NVN

)
. (40)

Assuming either independence of WJ on J (UJ does depend on J in general) or, alternatively,
VJ positive and in analogy with (6)

WJ := 1

V +
J VJ

= WJ (H, . . .) (41)

and taking the total trace (trN pertains to the matrix indices of the N × N matrices introduced
above, trH to the operators on H) we find

trH trN(ḂNWN) = 0 (42)

and thus

trH

(
Ḃ

∑
1→N

WJ

)
= 0 (43)

and

〈B|t=∞〉 = trH(B|t=0W)

trH(W)
(44)

W =
∑

J

WJ . (45)

To illustrate this result we take VJ as positive and assume the following specific ansatz:

WJ (V +V )J J = 1, 2, . . . (46)
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and put

V = exp

(
−βH

2

)
. (47)

The expectation value for B reaches asymptotically

〈B|t=∞〉 = 1

N̄
trH

(
B|t=0

exp(βH) − 1

)
(48)

which is simply the expectation value of the ‘particle’ observable B in an ideal Bose ‘gas’ of,
on average, N̄ ‘particles’ at inverse temperature β; ‘particle’ is just a more intuitive name for
the physical object dubbed ‘system’ up to now.

This interpretation deserves further clarifications. To this end we reformulate
equation (40) as an equation in Fock space HF , aiming at the Bose nature of the ideal
gas to be introduced. We define

HF :=
∑

J

⊕ H⊗J (49)

and

VF :=
∑

J

⊕ V ⊗J (50)

so that

WF = V +
F VF =

∑
J

⊕ (V +V )⊗J . (51)

In the product space H⊗J we select as physically relevant states symmetric states which we
take as superpositions of symmetric ‘system’ product states—we introduce many-‘particle’
boson states. The observable B is extended to a symmetrically operating operator

BF =
∑

J

⊕ (· · · ⊗ I ⊗ B ⊗ · · ·) (52)

where B stands consecutively on all positions of the J-fold product.
The expectation value at t = ∞ is, in strict analogy with (13) and (44)

〈BF |t=∞〉 = trHF
(BF |t=0WF )

trHF
(WF )

(53)

where the trace is now to be calculated with a symmetric product basis in H⊗J for all J.
Computing this trace one encounters disconnected terms (matrix elements now pertain to H)∑

i1,...,iL

〈i1|BV J |i1〉〈i2|V J |i2〉 · · · 〈iL|V Jk |iL〉 (54)

∑
l

Jl = J. (55)

All these terms sum up to the same common factor in the numerator and denominator—the
connected cluster theorem—so that we reproduce (48) with WJ = (V +V )J . We conclude
that any symmetric quantum many-particle state composed of whatever complex quantum
systems—a Bose many-particle state—is transported by Lindblad motion into an equilibrium
ensemble with a probability distribution

WBose = 1

WH − 1
(56)
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where

WH = 1

V +V
(57)

is an operator acting in the space of the system’s states. This derivation is a first step towards
a dissipative quantum field theory: the case of free fields, although we never explicitly
introduced this concept. I shall return to the extension to more complicated cases in a
forthcoming publication.
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